

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 1 of 14

R-ArcGIS Scripting

Tutorial Overview

R is an open-source statistical computing language that offers a large suite of data analysis and statistical
tools, and is currently the de facto standard for statistical data analysis and visualization for academics
and other communities. While its various third-party packages introduce a variety of advanced spatial
statistical capabilities, it can be a challenge to access many spatial datasets. The R-ArcGIS bridge solves

this challenge by providing an arcgisbinding package that allows ArcGIS datasets to be read and

written easily from the R programming language. This tutorial will introduce you to the use of the R-
ArcGIS Bridge in R scripts, and enable you to integrate ArcGIS datasets into your R statistical processes.
It will also give you the pre-requisite knowledge to create script tools in ArcGIS that execute R functions,
which will be covered in the following tutorial in this series.

Skills

By completing this tutorial, you will become comfortable with the following skills:

• Reading/writing ArcGIS datasets using the arcgisbinding package.

• Working with ArcGIS datasets in R

• Manipulating and analyzing spatial data in R

Time required

The following classroom time is required to complete this tutorial:

• 45 - 60 minutes

Materials Required

• Technology:

– R Statistical Computing Language (version 3.3.2+)

– RStudio Desktop (version 1.1.456+)

– ArcGIS Pro 1.1+ (2.2+ recommended) or ArcGIS Desktop 10.3.1+ (10.6.1+ recommended)

– R-ArcGIS Bindings (1.0.1.232+ recommended)

• Data:

– Data for this tutorial are included as part of the download in the packaged data folder.

Data Sources
• City of Toronto:

https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=1a66e03bb8d1e310VgnVCM10000071d
60f89RCRD

• Statistics Canada: http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm

Production Date

The Education and Research Group at Esri Canada makes every effort to present accurate and reliable
information. The Web sites and URLs used in this tutorial are from sources that were current at the time
of production, but are subject to change without notice to Esri Canada.

https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=1a66e03bb8d1e310VgnVCM10000071d60f89RCRD
https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=1a66e03bb8d1e310VgnVCM10000071d60f89RCRD
http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 2 of 14

• Production Date: October 2018

Background Information

The R user community has seen substantial growth in recent years, and is expected to continue growing
due to the increasing popularity of statistical data analysis. You can use R in conjunction with ArcGIS to
develop tools that can broaden the functionality of ArcGIS. Before you can create these tools, you need to

develop an understanding of how to work with the arcgisbinding package that is installed by the R-

ArcGIS bridge. Learning how to incorporate ArcGIS datasets into your R scripts to perform data analysis
will greatly extend the possibilities that exist for analyzing both spatial and non-spatial data.

R is different from many other programming languages, in that it was developed primarily for data
analysis and computational statistics. While the language and environment have evolved over the past
two decades to incorporate many other capabilities, this initial focus provides R with almost every
statistical model and data manipulation technique that you would need for modern data analysis.
However, it can be a challenge to integrate with other data types or software environments.

The arcgisbinding package resolves the challenge of working with ArcGIS datasets by introducing to

R a set of functions and classes that facilitate reading, writing, and manipulating ArcGIS datasets in the R
programming language. It further enables integration of R with ArcGIS software through the ability to
create script tools in ArcGIS toolboxes that execute R code.

By completing this tutorial, you will become familiar with the use of the arcgisbinding and the

capabilities it introduces to the R environment. You will learn how to read and write data from ArcGIS
datasets, and manipulate and analyze spatial data in the R programming language.

References and Reading

• R-ArcGIS Bridge: full documenation for the arcgisbinding package https://r-

arcgis.github.io/assets/arcgisbinding.pdf

• R-ArcGIS Bridge: vignette for the arcgisbinding package https://r-

arcgis.github.io/assets/arcgisbinding-vignette.html

• R-Stats group on GeoNet https://geonet.esri.com/groups/rstats

• R Statistical Computing Language http://www.r-project.org/

• Spatial ‘view’ of packages in the Comprehensive R Archive Network https://cran.r-
project.org/web/views/Spatial.html

Part A: Getting Started

To prepare for this workshop, you should have successfully completed the Getting Started and R
Scripting Basics tutorials, which will ensure that you the required software installed and configured, as
well as the basic R scripting skills necessary to complete this tutorial. From the R Scripting Basics tutorial,
should be familiar with the R and RStudio software, and be able to work with the R Markdown format
within the RStudio IDE. In this tutorial, everything discussed can be completed using the default RGui
installed with R. However, this document is available as an R-Markdown file that you can open and use
interactively in RStudio. If you choose instead to use RGui or another IDE, you can copy/paste code
snippets into any R console or R script, or otherwise or adapt the code in another IDE environment.

https://r-arcgis.github.io/assets/arcgisbinding.pdf
https://r-arcgis.github.io/assets/arcgisbinding.pdf
https://r-arcgis.github.io/assets/arcgisbinding-vignette.html
https://r-arcgis.github.io/assets/arcgisbinding-vignette.html
https://geonet.esri.com/groups/rstats
http://www.r-project.org/
https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 3 of 14

Setup

To work with the R Markdown source for this document:

1. Open the r-arcgis-rstudio.Rproj file in RStudio

2. Open the File tab in the top-right panel (based on the layout options recommended in the R

Scripting Basics tutorial), and click on the file named 3-R-ArcGIS-Scripting.Rmd. The R-

Markdown source code for this document will open in the Source editor window in the top-left.

3. In the top-right corner of the source editor, you may click the maximize icon to toggle the
maximized state of the panel, and use as much screen space as possible to display the document’s
source code.

Note: The remainder of this document is written with the expectation that you are working with the R
Markdown file in RStudio. If not, you may manually copy R commands enclosed in the ```{r} code blocks

into any R console, provided that your current working directory (reported by getwd()) corresponds with

the location where the tutorial files are located.

Before proceeding to interactively run code in the rest of the R Markdown document, select Restart R and

Clear Output from the menu, and then run the following block to configure the R environment to

help with the display of outputs in the resulting R Notebook, and to prepare a example.gdb file

geodatabase from an empty template in the data/ folder:

Load the R-ArcGIS arcgisbinding package

In any stand-alone R script, you must load the arcgisbinding package in the current R session, and

then call arc.check_product() before you can use any of the functionality provided by the

arcgisbinding package. In the next tutorial, you will learn that this is not required when using an R

script configured as a script tool in an ArcGIS Toolbox. However, it is a step that must always be

performed to use arcgisbinding methods from an R console or in an R IDE such as RStudio.

To get started using the arcgisbinding package in this tutorial, run the block of code below to load the

package and bind to your ArcGIS Pro or ArcGIS Desktop (ArcMap) software in your current R session:

library(arcgisbinding)

*** Please call arc.check_product() to define a desktop license.

arc.check_product()

product: ArcGIS Pro (12.2.0.12813)

license: Advanced

version: 1.0.1.232

Hint: Remember from the R Scripting Basics* tutorial that the helper-functions.R script included in

the tutorial files provides methods that do this for you. You can try replacing the lines above with the R

command to source() the helper script, and then use the load_pkgs() function. You could also

replace any library() statements in the remainder of this document with load_pkgs(), which would

ensure any missing CRAN packages are be installed automatically from the Internet.*

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 4 of 14

Part B: Reading data from ArcGIS Datasets

The arcgisbinding package provides two methods that enable you to easily read data directly from

ArcGIS datasets. For reading data, you will use arc.open() to create dataset objects that essentially

serve as a connection to an existing ArcGIS dataset. With a dataset object, you may then use

arc.select() to connect to existing datasets and read features/tables into data frames in the R

workspace, or arc.raster() to load raster datasets.

Connecting to an ArcGIS dataset

To use the arc.open() method to connect to an existing ArcGIS dataset, you must provide it with a

single argument that specifies a path. The path must point to a standard feature class, feature layer,
table, or raster dataset in a format supported by ArcGIS Pro or ArcGIS Desktop. These include simple
files (e.g., shapefiles, csv, dBASE), geodatabases (file/enterprise), feature dataset components, GeoTiff
images, etc. In 64-bit/Pro, feature service URLs will also work.

The returned result from the arc.open() method is a dataset object, which contains details about the

spatial characteristics and attributes contained within the dataset.

Note: When specifying paths, be sure to escape backslashes (using double-backslashes), or use forward

slashes. Paths may be absolute paths (starting with a drive letter (e.g., C:/), or a network share

(//hostname/share/)), or they can be relative to the current working directory (that you can get or set

the with getwd() and setwd() commands)

Start by opening the polygon boundaries for census subdivisions from Statistics Canada for the 2016
Census:

?arc.open

csd <- arc.open("data/census/census2016.gdb/CensusSubdivisions")

You can report a summary of the dataset, or inspect several attributes as object properties (path,

dataset_type, extent, fields, and spatialinfo) using the @ operator:

csd

dataset_type : FeatureClass

path : data/census/census2016.gdb/CensusSubdivisions

fields : OBJECTID, Shape, CSDUID, CSDNAME, CSDTYPE, PRUID,

fields : PRNAME, CDUID, CDNAME, CDTYPE, CCSUID, CCSNAME, ERUID,

fields : ERNAME, SACCODE, SACTYPE, CMAUID, CMAPUID, CMANAME,

fields : CMATYPE, Shape_Length, Shape_Area

extent : xmin=3689439, ymin=659338.9, xmax=9015737, ymax=5242179

geometry type : Polygon

WKT : PROJCS["PCS_Lambert_Conformal_Conic",GEOGCS["GCS_North_Ameri...

csd@shapeinfo

geometry type : Polygon

WKT : PROJCS["PCS_Lambert_Conformal_Conic",GEOGCS["GCS_North_Ameri...

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 5 of 14

csd@extent

xmin ymin xmax ymax

3689439.0 659338.9 9015736.6 5242179.2

Reading an ArcGIS dataset into a data frame

To load data from the connection into a data frame in the current R session, use the arc.select()

method. This method requires a dataset object created by the arc.open() as its first argument. You

may also optionally supply any of the four following as positional or named arguments:

• fields - A character vector of one or more fieldnames to select. Defaults to '*' (i.e., to select all

fields)

• where_clause - An optional string representing an SQL query to filter features read from the

dataset. Defaults to an empty string (i.e., to select all records)

• selected - In the context of a script tool, if records are selected in the layer or table from the

corresponding ArcGIS Pro or ArcGIS Desktop session, then only those records will be read into the

R session. Defaults to TRUE.

• sr - If set to a well-known ID, well-known text, or Proj.4 text representation of a spatial reference,

features will be automatically reprojected as they are read into the R session. Defaults to NULL (i.e.,
features will be read in their original spatial reference)

Load the CSD boundaries for Canada, and keep only the province name, CSD name, and CSD Identifier
attributes:

?arc.select

csd_df <- arc.select(csd, c("PRNAME", "CSDNAME", "CSDUID"))

The same data could be read with by providing the desired fieldnames as a named argument to the

arc.select():

csd_df <- arc.select(csd, fields = c("PRNAME", "CSDNAME", "CSDUID"))

class(csd_df)

[1] "arc.data" "data.frame"

Tip: using named arguments allows you to execute the function without memorizing the positional order

of optional arguments, and/or omit optional that you do not want to define. Also note the use of the =

operator for named arguments, versus the <- assignment operator.

Part C: Working with ArcGIS datasets in R

Once you have loaded data from an ArcGIS dataset into an R session, you can work with it like any
regular data frame. For example, you may want to load join some additional tabular data and join it to
boundaries to enable you to perform spatial analyses using a variety of spatial statistical packages in R.
Do do this, you could load a feature layer that already has data joined to it from an ArcGIS Pro or ArcGIS
Desktop session, or by reading data from feature layer that has a pre-defined join in it.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 6 of 14

Manipulating ArcGIS spatial data frames

It is also possible to join two datasets easily within the R language using functionality provided by the

dplyr package. In the code block below, income data from the 2016 census aggregated at the census

subdivision level are loaded from an ArcGIS file geodatabase table. An SQL clause is applied to limit
features to those with valid global non-response rates below 25%, and the results are joined to the

csd_df data frame containing the census subdivision boundaries. The forward-pipe operator %>% is used

to chain the arc.open(), arc.select() and right_join() methods in a single command, with the

result assigned to the csd_income variable:

library(dplyr)

Load income data for dissemination areas, and join by the csd geo_code the boundary
data frame:

csd_income <- arc.open('data/census/census2016.gdb/income2016csd') %>%

 arc.select(c("geo_code", "gnr", "pop2016_t", "popdens_t", "income_median_t"),
where_clause = "gnr is not null and gnr < 25") %>%

 right_join(csd_df, by = c("geo_code" = "CSDUID"))

class(csd_income)

[1] "data.frame"

This join operation produces a new data frame that does not include the spatial information from the

original csd_df data frame. To attach the joined attributes back to the csd_df data frame, we can

assign columns directly. This can be done because the csd_df data frame was provided as the ‘right’

data frame in the right_join() method above, so the resulting csd_income data frame has the same

number and order of rows:

Add columns back to the boundaries data frame:

csd_df$income_median_t <- csd_income$income_median_t

csd_df$pop2016_t <- csd_income$pop2016_t

csd_df$popdens_t <- csd_income$popdens_t

csd_df$gnr <- csd_income$gnr

Note: This limitation may be addressed in a future version of the R-ArcGIS bridge. For the time being, this

workaround is needed. Another alternative, by converting the ArcGIS spatial data frame to an sp data

frame, and using the spdplyr package is discussed later in this tutorial.

It can be useful to rank or categorize data. For example, we can categorize CSDs into quantiles using the

dplyr ntile() method. There are several other dplyr methods available for ranking data. Type

?ranking in the R console to read more - try adding a percentile rank of CSDs by population density, for

example:

csd_df$income_group <- ntile(csd_df$income_median_t, 5)

With a quantile column now added, we can summarize data by groups. In the code block below, the

csd_df data frame is filtered to limit operations to rows with a valid income_group value, then grouped

by income_group. Next, the summarize_at() function is used to obtain min/max values of population

and median income for each group. The mutate() function created new columns with simpler names for

the results of the summarize_at() method. Using the right_join() and select() methods, these

new columns are joined to the csd_df data frame, and then isolated from the rest of the columns in the

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 7 of 14

data. The results are assigned to a csd_group_ranges variable. To attach new columns representing

the min/max population and median income of each census boundary’s corresponding income group, we

can assign columns from the csd_group_ranges back to the original csd_df data frame:

csd_group_ranges <- csd_df %>%

 filter(!is.na(income_group)) %>%

 group_by(income_group) %>%

 summarize_at(vars(pop2016_t,income_median_t), funs(min(., na.rm = TRUE), max(.,
na.rm = TRUE))) %>%

 mutate(

 income_min = income_median_t_min,

 income_max = income_median_t_max,

 pop_min = pop2016_t_min,

 pop_max = pop2016_t_max

) %>%

 right_join(csd_df) %>%

 select(income_min, income_max, pop_min, pop_max)

Joining, by = "income_group"

csd_df$income_min = csd_group_ranges$income_min

csd_df$income_max = csd_group_ranges$income_max

csd_df$pop_min = csd_group_ranges$pop_min

csd_df$pop_max = csd_group_ranges$pop_max

Working with spatial data in R

Thus far we have learned how to work with ArcGIS spatial data frames, which can be analyzed and
manipulated much like any other data frame objects in R. However, many packages in R that work with

spatial data require geospatial features to be represented in other object types. The arcgisbinding

package provides several methods that allow you to convert data to/from sp types of data objects:

Manipulation and visualization of spatial data

• arc.data2sp() - easily converts ArcGIS spatial data frames to sp data frame objects

(SpatialPointsDataFrame, SpatialLinesDataFrame, or SpatialPolygonsDataFrame)

• arc.data2sf() - converts ArcGIS spatial data frames to sf simple feature data frames (POINT,

MULTIPOINT, POLYGON, MULTIPOLYGON, LINESTRING, or MULTILINESTRING)

• arc.shape2sp() and arc.shape2sf() - if you do not require the attributes associated with your

features, these methods may be used to convert an ArcGIS shape object (from an ArcGIS spatial

data frame) into simple sp spatial objects (SpatialLines, SpatialPoints, or

SpatailPolygons) or sf objects (POINT, MULTIPOINT, POLYGON, MULTIPOLYGON,

LINESTRING, or MULTILINESTRING)

By converting your ArcGIS data frame objects to sp spatial data frames you will be able to use variety of

existing packages and operations in R designed for working with spatial data. The sp package, for

example, makes it easy to generate map plots using the spplot() function. Spatial data frames can

also be manipulated using functions provided by the spdplyr package, which exposes many dplyr-like

verbs. Numerous other packages that provide geospatial analytical methods will accept or return sp data

objects as inputs and outputs. Similarly, by converting data to sf objects, you have the ability to use

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 8 of 14

many standard spatial operation functions provided by the sf package (e.g., st_union,

st_intersection, st_distance).

In the block of code below, we can see the csd_df data frame with census subdivision boundaries is

converted into an sp data frame object, that is assigned to the csd_sp variable. Using the spplot and

the filter() function from the spdplyr package, we can easily generate a map plots of polygons for

subsets of data from the spatial data frame. In this case, we are displaying the median income levels for
census subdivisions in New Brunswick, or British Columbia.

?arc.data2sp

csd_sp <- arc.data2sp(csd_df)

library(spdplyr)

Loading required package: sp

Show the income for CSDs in New Brunwswick::

spplot(filter(csd_sp, grepl("New Brunswick", PRNAME)), "income_median_t")

Or British Columbia:

spplot(filter(csd_sp, grepl("British Columbia", PRNAME)), "income_median_t")

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 9 of 14

With the spdplyr package available for working with sp data frame objects, we can to perform additional

operations like left_join() or inner_join() and retain the data frame’s spatial properties. For

example, the earlier code block that created the csd_income data frame by performing a join with the

csd_df data frame could rewritten as follows:

Load Saskatchewan boundaries and income data:

sask_df <- arc.select(csd, fields = c("PRNAME", "CSDNAME", "CSDUID"), where_clause =
"PRNAME like 'Sask%'")

income_df <- arc.open('data/census/census2016.gdb/income2016csd') %>%

 arc.select(c("geo_code", "gnr", "pop2016_t", "popdens_t", "income_median_t"),
where_clause = "gnr is not null and gnr < 25")

Join income data to the saskatchewan boundaries using by using an intermediate sp
data frame

csd_income_sp <- left_join(arc.data2sp(sask_df), income_df, by = c("CSDUID" =
"geo_code"))

class(csd_income_sp)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

The resulting csd_income_spatial data frame created above will have ArcGIS spatial properties, plus

the additional columns added directly to it from the joined data frame. If you inspect it in the Environment

tab in RStudio, you will see its first 7 columns are identical to the csd_df that we have been working

with so far in this tutorial.

Because of the intermediate translation to/from an sp data frame, this may be less efficient when working

with larger datasets (e.g., the sample above is limited to Saskatchewan boundaries). If you need to work

with your data in sp data frames in your analysis, you can use this approach and other verbs supported

by spdplyr to help simplify your code. You can get full details about the dplyr verbs that can be

executed with sp data frames using the spdplyr package by executing ?"dplyr-Spatial" to display

the corresponding help documentation.

Analyzing spatial data in R

There are many different spatial statistical analysis packages available for R. To get a thorough overview,
refer to the Spatial CRAN Task View at https://cran.r-project.org/web/views/Spatial.html. Typically, the
spatial analysis functions in each of package will work with specific structures of data, or specific data

object types, such as sp data frames.

As an example, using the income data available for census subdivisions, we can calculate income

inequality statistics using functions provided by the ineq package. In the code block below, we can

generate a Lorenz curve and calculate the Gini coefficient for census subdivisions within Ontario to
measure inequality of median income across the province.

Note: the plot() and text() command must be executed at the same time to work properly. When

running these functions within the R-Markdown document in RStudio, either highlight all of the lines from

the plot() command to the text() command and press CTRL+Enter, or run the entire block at once

by pressing the button

https://cran.r-project.org/web/views/Spatial.html

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 10 of 14

Load the ineq package:

library(ineq)

Filter out N/A values for income, and limit to Ontario CSDs:

on_spdata <- csd_sp %>% filter(!is.na(income_median_t), grepl("Ontario", PRNAME))

Calculate the lorenz curve:

?Lc

lc <- Lc(on_spdata$income_median_t)

plot(lc)

Calculate the Gini coefficient, and add it to the plot:

?Gini

g <- Gini(on_spdata$income_median_t)

text(0.2,0.9,paste(c("Gini: ", as.character(g)), collapse=""))

Note: this analysis is for illustrative purposes only - income indicators aggregated at census subdivision
levels will not reveal much of the inequality that occurs within the census subdivisions themselves

Since we have we have census subdivision boundaries associated with our data, we can look at spatial

properties of the Gini coefficient using the spGini() method from the lctools package. The

spGini() function allows us to discern how much of the Gini coefficient we observed for median income

at the census subdivision level can be attributed to a inequality among local neighbours (gwGini in the

output) vs non-spatial neighbours (nsGini). In this case, the spGini() function requires simple

coordinates represented as a matrix. We can obtain the this from the centroid points of each census

subdivision using the sp package’s coordinates() function.

library(lctools)

?spGini
?coordinates

the spGini method relies on simple x/y coordinates:

coords = coordinates(on_spdata)

spG <- spGini(coords, 15, on_spdata$income_median_t)

spG

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 11 of 14

Gini gwGini nsGini gwGini.frac nsGini.frac

0.12121168 0.00292217 0.11828951 0.02410799 0.97589201

The results of the spGini() analysis in this example will show that the majority of the Gini coefficient for

the province of Ontario at the census subdivision level does not come from inequality between
neighbouring locations (with 97.5% of the global Gini coming from inequality between non-spatially
coincident census subdivisions). The significance of these results can be tested by running a monte-carlo

simulation series using the mc.spGini() function (Note: this test may take a few minutes to execute):

?mc.spGini

Run a monte-carlo simulation to test significance:

spG.sim20 <- mc.spGini(Nsim=19, 15, on_spdata$income_median_t, coords[,1],
coords[,2])

spG.sim20$pseudo.p

[1] 0.05

By running 19 (or more) simulations, it can be determined whether the observed results from spGini()

are significant by obtaining pseudo p-value of 0.05 or lower (i.e., suggesting that the probability that the
observed result is due to chance is 5% or less).

Part D: Writing data from R to ArcGIS datasets

At this point, we have shown that ArcGIS datasets can be read easily into an R session, and
demonstrated how you can manipulate spatial data frames, visualize the spatial data in map plots, and
use the spatial data objects in spatial analyses. However, the R-ArcGIS bridge works in both directions,
enabling you to further analyze, visualize, and collaborate by connecting the outputs of your R programs
to the ArcGIS platform.

The simplest approach for this that the arcgisbinding package provides is to write your data to

ArcGIS datasets using the arc.write() method. With this function, you can write spatial and tabular

data frames, and raster objects to conventional ArcGIS dataset formats. The arc.write() method

requires at least two arguments:

• path: the full or relative path to an ArcGIS dataset that will be created (e.g., *.shp, *.csv, *.dbf, *.gdb

featureclass/table/raster, *.img, *.tif, etc.).

• data: the data frame to be written (ArcGIS or sp spatial data frame, or simple tabular data frame).

This must be an ArcGIS spatial data frame, an sp data frame, an sf object, a simple tabular data

frame, or a RasterLayer or RasterBrick object from the raster package.

If you are using the arc.write() method from to overwrite an output dataset, you can provide an

additional overwrite = TRUE parameter to the arguments. This will delete any existing dataset at the

output path, and replace it with the new one that you are writing.

Note: When writing output datasets, you will not see any error or confirmation prompt if a dataset at the

specified path already exists when you provide the overwrite = TRUE option.

In the code block below, you can see the Ontario census subdivision data we analyzed as an sp spatial

dataframe being written as a new feature class in an a sample example.gdb file geodatabase:

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 12 of 14

?arc.write

arc.write('data/example.gdb/ontario_data', on_spdata, overwrite = TRUE)

Choosing an output path for arc.write():

When you specify the output path to use with arc.write(), ensure that you appropriately define a new

path for a shapefile inside a regular folder, or to a new featureclass inside of an ArcGIS geodatabase.

These paths may be relative, or absolute file locations (as with the arc.open() command), for example:

• arc.write('example.gdb/ontario_data', on_spdata) - creates a new feature class in

an existing example.gdb file geodatabase

• arc.write('data.sde/ontario_data', on_spdata) - creates a new feature class in an

existing enterprise geodatabse, identified by the data.sde connection file

• arc.write('data/ontario_data.shp' on_spdata) - creates a new shapefile in the data

folder location

If you want to save tabular data, specify path to a new table name in a geodatabase, or an appropriate
tabular file format in a folder. If you only want to save tabular data from a spatial data frame object

(whether it is an arcgisbinding, sp, or sf data object), you can wrap the variable in the

data.frame() function to discard the spatial information. For example:

• arc.write('example.gdb/ontario_data_tbl', data.frame(on_spdata)) - creates a

new table in an existing example.gdb file geodatabase

• arc.write('data/ontario_data_tbl.dbf', data.frame(on_spdata) - creates a new

table in dBASE format in the data folder

• arc.write('data/ontario_data_tbl.csv' data.frame(on_spdata)) - creates a new

table in comma-separated variable text format in the data folder

Note: fieldnames in feature classes and tables will be truncated when written to shapefile or dBASE
formats. When written to geodatabases, invalid characters in fieldnames will be converted to
underscores, and fieldnames may otherwise be converted to upper or lowercase depending on the
underlying database system.

If you are writing raster data objects, then you must similarly specify a path to a new dataset name in a
geodatabase, or to an appropriate raster file format in a folder:

• arc.write('example.gdb/raster_dataset', raster_data) - creates a new raster

dataset in an existing example.gdb file geodatabase

• arc.write('data/raster_dataset.tif', raster_data) - creates a GeoTiff file in the

data folder

When an R script is run as a script tool in an ArcGIS Toolbox, overwriting output files is less of a concern
when the paths are defined using output parameters. In this context, the ArcGIS geoprocessing
environment will either prevent overwriting existing datasets, or cleanly remove them before executing the
script tool (based on whether the geoprocessing option to allow tools to overwrite outputs is enabled). In

this context, it should not be required to use the overwrite parameter.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 13 of 14

Working with spatial reference definitions:

In some cases, depending on your specific data source and/or the process through which your data are
created, you may need to use different representations of spatial reference systems. The

arcgisbinding package provides two convenience methods for converting between Well-known ID /

Well-known Text and Proj.4 spatial reference systems definitions:

• arc.fromWktToP4() - converts a Well-known ID (a.k.a., SRID) or Well-known Text spatial

reference to Proj.4 text

• arc.fromP4ToWkt() - converts a Proj.4 spatial reference text string to Well-known text format.

For example, to convert the standard web mercator projection from a its well-known ID to Proj.4 text, then
back to a full WKT text string:

wm_p4 <- arc.fromWktToP4(3857)

wm_p4

[1] "+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1
+units=m +nadgrids=@null +wktext +no_defs"

wm_wkt <- arc.fromP4ToWkt(wm_p4)

wm_wkt

[1]
"PROJCS[\"WGS_1984_Web_Mercator_Auxiliary_Sphere\",GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_
WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],
UNIT[\"Degree\",0.0174532925199433]],PROJECTION[\"Mercator_Auxiliary_Sphere\"],PARAME
TER[\"False_Easting\",0.0],PARAMETER[\"False_Northing\",0.0],PARAMETER[\"Central_Meri
dian\",0.0],PARAMETER[\"Standard_Parallel_1\",0.0],PARAMETER[\"Auxiliary_Sphere_Type\
",0.0],UNIT[\"Meter\",1.0]]"

Exercise 1

At this point, you are now able to read, manipulate, analyze, visualize, and write ArcGIS datasets in the R

programming language using the arcgisbinding package installed by the R-ArcGIS bridge. To test

your skills, try the following:

• Load the data/toronto/neighbourhoods_crime.shp shapefile into a new spatial data frame

• Load the data/toronto/wb_civics_2011.csv table into a new data frame, and join its

columns to the neighbourhoods_crime data frame. Hint: one of these stores its identifier as a
character vector

• Add a column with quantile ranks, group/summarize some of the data, create some box plots.

• Write the data with the columns added from the wb_civics_2011.csv data back to a new shapefile.
Hint: remember the result of a join using dplyr with an ArcGIS spatial data frame does not return
shape data – copy columns back to the original data frame created by the arc.select() command, or

convert the data to an sp spatial data frame, then use the join commands provided by the spdplyr

package.

• Add the new shapefile to your map in ArcGIS Pro or ArcMap, and style it by the quantile ranks you
added.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
R-ArcGIS Scripting

highered@esri.ca hed.esri.ca Page 14 of 14

Future Considerations

The arcgisbinding package provided by the R-ArcGIS bridge is an effective tool to integrate ArcGIS

datasets efficiently into your R programs. It also allows you to generate new ArcGIS datasets as outputs
from your R programs to make results from your analyses easily viewed and processed in ArcGIS
applications. This is a significant advantage for developing R programs that need to work with spatial
datasets that are easily managed by ArcGIS applications.

Integration of your R scripts with the ArcGIS platform is even more effective if you implement them as
script tools in an ArcGIS toolbox. Doing so makes input/output of datasets and numerical/text parameter
values seamless, and enables immediate visualization of feature classes and tables output by your tools.
Your R script tools can be further integrated into larger processes, for example by incorporating them into
an ArcGIS Model Builder workspace, or importing them to Python scripts using ArcPy commands to
create more advanced geoprocessing workflows.

It is highly recommended that you continue the tutorial series by completing the Building R Script Tools
tutorial. This will teach you how to create toolboxes that integrate your R code with ArcGIS Pro or ArcGIS
Desktop.

http://hed.esri.ca
© 2018 Esri Canada. All rights reserved. Trademarks provided
under license from Environmental Systems Research Institute Inc.
Other product and company names mentioned herein may be
trademarks or registered trademarks of their respective owners. Errors and
omissions excepted. This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://hed.esri.ca/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

